

THE POTENTIAL FOR SEAWEED TO ENHANCE THE RURAL ECONOMY IN THE FALKLAND ISLANDS

Jim M^cAdam U.K. Falkland Islands Trust and Queen's University of Belfast

THE FALKLAND ISLANDS

(Area: 1.2 million ha ; POP = 2.400)

Climate : Maritime, Cool, Windy and Dry (Mean Summer 9°C ; Winter 2°C ; 600mm rain).

- Soils : Acid (pH 4-4.5); infertile peats low N and P status.
- **Overation**: Dwarf shrub heath and tussock -grassland.
- **Agriculture :** Extensive sheep farming for wool

PROBLEMS

- **Notal reliance on one product.**
- δ Low wool prices.
- Sector Fragile rural economy infrastructure.
- δ Limited opportunities for diversification.
- δ Decline in rural population.

POSSIBLE SOLUTIONS

- δ Seek niche market products.
- δ Diversify production.
- √ Exploit "Clean green" image.
- δ Organic status.
- δ Move from sheep to cattle.

INCREASED OUTPUT OF "ORGANIC" QUALITY MEAT OR OTHER PRODUCTS WILL REQUIRE

Shelter.

√ Improved, legume-based pasture.

 δ Fodder crops to fatten stock.

THE KEY TO THESE WILL BE IMPROVED SOIL FERTILITY AND ANIMAL NUTRITION

SOIL FERTILITY

- δ No indigenous fertiliser sources
- Some deposits of Calcified seaweed
- Huge resources of kelp around the Islands mainly Macrocystis pyrifera, but also Lessonia flavicans, L. nigrescens & L. frutescens.
- Section 2010 Secti

SEAWEED QUALITY

Analysis of Kelp (*Macrocystis pyrifera*) fronds collected in the Falkland Islands (Keppel Island), January 1987.

Element	Level
Carbon (%)	62.1
Nitrogen (%)	1.79
C:N ratio	34.7
Potassium (%)	3.3
Phosphorous (%)	1.5
Magnesium (%)	0.4
Chlorine (%)	3.1
Calcium (%)	1.4
Cobalt ppm	<3.0
Copper ppm	7.9
lodine ppm	1000

USES OF SEAWEED

☆Manurial & water retention for tree establishment in shelterbelts.

^(*) As a fertiliser on improved grasslands.

^(b) As a supplement in animal feed rations.

Export for specialist uses e.g. alginates; cosmetics; health food.

EFFECT ON GRASSLAND

1. LIQUEFIED KELP EXTRACT ON Dactylis glomerata GROWTH

Applied : November Assessed : January

Growth of cocksfoot tillers (12 weeks) mg/tiller/day

Assessment:	Control	7
	Nitrochalk	21
	Kelp extract	17

p < 0.01

2. KELP EXTRACT ON ESTABLISHED RESEED

The effect of kelp extract applied at 50 litres ha⁻¹ (1.2 kg N ha⁻¹ equivalent) and inorganic nitrogen applied as Nitrochalk at 60kg N ha⁻¹ equivalent on grass production between October and January.

	Control	Nitro -	Kelp	S.E.	
	Chalk				
Total Grass					
Yield					
(Kg DM ha-1)	1980	5531	2430	148	
Stubble height					
following 2 weeks					
regrowth (cm)	2.7	3.4	5.1	0.28	

TUSSAC GRASS (Poa flabellata)

- A potentially valuable native, coastal, tall tussock-forming grass.
- ∂ High digestibility all year.
- √ Good wildlife habitat.
- Needs careful management now a scarce resource.
- $\log Reintroduction programme planned.$

3. EFFECT OF SEAWEED EXTRACT AND DRIED GROUND SEAWEED ON TUSSAC GRASS.

- ☆ Establishment and early growth unaffected by dried or chopped, raw seaweed on two reasonably fertile sites. No response to any fertiliser.
- On a poor site, in second growing year, plants grew taller (p < 0.05) with seaweed extract than Nitrochalk.</p>
- Period Mean tiller number increased from 2 to 21 in year 2.

SUMMARY Seaweed on Grassland

- δ Liquid seaweed extract has fertiliser value.
- Response on Grassland is more than to the N content of the material alone.
- Other major elements and hormones involved.
- Reseeds and Tussac grass will respond to seaweed though high quantities must be

OTHER POTENTIAL USES

- Or a supplement concentrate diets for livestock feed - e.g. to produce "niche-market organic beef" - needs testing.
- Second Export air dried, ground product for further processing e.g. Alginates, Cosmetics, Health foods.
- Purity of environment around the Falklands (Oceanic, distance from population & pollution sources) can be a key marketing advantage.
- All of these could generate rural employment opportunities in an extremely depressed sector.

SUMMARY - 1

- In the Falkland Islands, climate, soil and vegetation result in extensive sheep farming as the main land use.
- √ Wool prices are poor and there is a need for diversification to create sustainable rural employment.
- Or A Provide Addition of the second second
 - cereal, growing
 - livestock nutrition
 - shelterbelt creation

all of which will contribute to a diversified agriculture within a wholly organic concept.

SUMMARY - 2

√ The potential to export semi-processed seaweed is high and there are several significant natural advantages.

∂ The Falklands must develop niche markets for its products and expand and diversify its rural economy - seaweed can play a key role in this.

FALKLAND ISLANDS NATURAL ADVANTAGES

 δ Kelp will air dry to 20% moisture content.

- δ Shallow, indented coastline.
- δ No access or ownership problems.
- Oceanic position with very low pollution levels - "pure" products.